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Rate-Distortion Performance in Coding B andlimited 
Sources by Sampling and Dithered Quantization 

Ram Zamir and Meir Feder, Senior Member, IEEE 

Abstract- The rate-distortion characteristics of a scheme for 
encoding continuous-time band limited stationary sources, with 
a prescribed band, is considered. In this coding procedure the 
input is sampled at Nyquist’s rate or faster, the samples undergo 
dithered uniform or lattice quantization, using subtractive dither, 
and the quantizer output is entropy-coded. The rate-distortion 
performance, and the tradeoff between the sampling rate and 
the quantization accuracy is investigated, utilizing the observation 
that the coding scheme is equivalent to an additive noise channel. 
It is shown that the mean-square error of the scheme is fixed 
as long as the product of the sampling period and the quantizer 
second moment is kept constant, while for a k e d  distortion the 
coding rate generally increases when the sampling rate exceeds 
the Nyquist rate. Finally, as the lattice quantizer dimension 
becomes large, the equivalent additive noise channel of the 
scheme tends to be white Gaussian, and both the rate and the 
distortion performance become invariant to the sampling rate. 

Index TermsSampling, unifordattice quantization, dithered 
quantization, universal coding, bandlimited signals. 

I. INTRODUCTION 
YQUIST’S well-known sampling theorem states that a N bandlimited signal can be faithfully represented via its 

samples taken at a rate twice its bandwidth. The samples may 
have continuously many values. In practice, the samples are 
quantized, leading to a distorted representation of the original 
signal. The rate-distortion characteristics of this digitization 
scheme may be analyzed via classical quantization theory, 
summarized, e.g., in [21]. Furthermore, the rate-distortion 
function of the bandlimited source, representing the optimal 
performance in compressing this source, is given by the rate- 
distortion function of the discrete-time process, sampled at 
Nyquist’s rate (see, e.g., [l p. 1371). 

In theory, then, there is no need to sample the bandlimited 
process at a rate higher than Nyquist’s rate. However, when 
practical quantization is examined instead of the theoretically 
optimal rate-distortion function, increasing the sampling rate 
may be advantageous. It seems that by increasing the sam- 
pling rate we may reduce the required quantization resolution 
and still achieve comparable rate-distortion characteristics in 
compressing the original signal. The practical advantages of 
using a smaller number of quantization levels, even a single- 
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bit quantization accuracy, at high sampling rate, are indicated 
by the recently popular sigma-delta techniques [8]. 

As a matter of fact, while infinite resolution sampling at 
Nyquist’s rate provided one extreme condition for perfect 
reconstruction, it was shown more recently (see, e.g., [15]) 
that under certain conditions bandlimited signals may be 
faithfully reconstructed by the location of their zero crossing, 
level crossing, or the location of their intersection with some 
functions. For this reconstruction the zero-crossing location 
must be provided with an infinite accuracy, whose specification 
requires an infinite number of bits. Specification at any finite 
precision (corresponding to a finite information rate) leads, of 
course, to a distorted reconstruction. 

The two extreme cases that provide perfect reconstruction 
with an infinite amount of information seem to be understood. 
However, in cases where distortion is allowed, the behavior 
is not clear, and it is interesting to analyze the tradeoff 
between the sampling rate and the quantization accuracy 
at various values for the distortion and information rate. 
With this motivation in mind, we provide in this paper an 
explicit rate-distortion analysis of a sampling and quantiza- 
tion scheme for encoding continuous-time continuous-value 
stationary bandlimited signals. In this analysis we examine 
the sampling rate/quantization accuracy tradeoffs. Sampling 
and quantization schemes have been considered and analyzed 
before, e.g., in [11], [20], and elsewhere. However, unlike 
previous results on this subject, we are able to come up with 
explicit rate-distortion expressions, by considering Entropy- 
Coded Dithered Quantization (ECDQ), and relying on our 
previous results in [22] where the rate-distortion performance 
of ECDQ for vector sources has been an‘alyzed. 

Our analysis shows that at a fixed mean-square error, there 
is an extra cost in coding rate as the sampling rate increases 
above the Nyquist rate. In scalar quantization, for example, 
when we sample at twice the Nyquist rate, we may use a 
quantizer (or an A/D) whose number of levels is reduced 
by a factor of a, and still get the same distortion, but the 
total coding rate will increase by approximately 0.47 bit per 
each original Nyquist sample. The same effect happens for 
lattice quantizers, although the additional coding rate becomes 
smaller as the lattice dimension grows. 

In this paper we consider coding of continuous-time random 
processes. The definitions and theorems associated with infor- 
mation functions of such entities sometimes require compli- 
cated concepts and definitions that were originally introduced 
by Kolmogorov [12], and later on extended and made rigorous 
by Pinsker [16] and others. We try to state the main ideas of 
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Fig. 1. (a) The sampling quantization, and coding scheme. (b) Its equivalent additive noise channel. 

this paper in an intuitive manner; however, in our analysis of 
the coding rate and the effects of the sampling rate, in Sections 
IV and V, we must use the appropriate Pinsker's definition 
of the mutual information and the various definitions of the 
rate-distortion function, which in tum might have complicated 
the exposition. We provide some background and explanations 
along the paper and the Appendix, but the reader may need to 
consult an additional basic reference on information functions 
of random processes, such as [9]. 

11. DEFINITIONS AND SCHEME DESCRIPTION 

Let x = { z ( t ) ,  ---CO < t < co} be a sample function of a 
mean-square (M.S.)-sense bandlimited source X .  It is assumed 
that the source is stationary with a finite power a:, and that 
its power spectrum function is limited to the frequency band 
0 5 f 5 B, i.e., 

S, ( f )  = 0, for all f > B (1) 

where, since the power spectrum is symmetric in f ,  we con- 
sider in this paper only nonnegative frequencies. Besides (1) 
no additional knowledge on Sz(f) is assumed. Throughout the 
paper we use capital letters, e.g., X ( t ) ,  X, X ,  to denote the 
random variable, vector, on process, and use, e.g., z ( t ) ,  z, z 
to denote their sample values. 

In the proposed scheme for coding z ( t )  the signal is passed 
through an "anti-aliasing filter" 

for f 5 B 
= { i: otherwise 

and sampled at a rate F, = l/Ts 2 2B samples per second 
where 2B is the Nyquist rate. The filter H I  forces every source 
realization to be bandlimited, and its necessity will become 
clear later. The sampled signal, 5,  = {x,[n], -cc < R < co}, 
is transmitted via a noiseless channel, at a rate RQ, using an 
ECDQ procedure with a white lattice quantizer (the definition 
of a white quantizer is provided below). The reconstructed 

discrete-time signal at the output of the ECDQ is denoted P,. 
Finally, a continuous-time distorted signal, denoted 2( t ) ,  is 
reconstructed using an ideal digital-to-analog (D/A) converter 
and a bandpass filter H 2 ( f )  = H l ( f ) .  The coding scheme is 
illustrated in Fig. l(a). 

The main component of our scheme is the Entropy-Coded 
Dithered Quantizer (ECDQ), which is a dithered lattice quan- 
tizer, with a subtractive dither, followed by lossless coding. 
The ECDQ has been analyzed in [25] and [22], but for 
completeness, we provide here its definition and some of 
its properties that will be needed throughout the paper. For 
this, we first recall definition of a lattice quantizer. A K -  
dimensional lattice quantizer Q K  = {C, 'P} is defined by a set 
of code points C = { I , } ,  which form a K-dimensional lattice, 
and an associated partition P = {P,} of R", such that 

P, = 1, +PO = (2: 2 - 1,  E Po}, z E R". (3) 

The quantizer maps a source vector X K  E P, into its associated 
lattice point I , ,  i.e., Q K ( Z K )  = 1, for z E P,. When the 
mapping is into the nearest lattice point, we get the commonly 
used Voronoi partition (see [ 3 ] ) .  

In the sequel we use the notation QK(z), where z E R" and 
K divides n, to denote a vector in R" which is a concatenation 
of n / K  successive lattice points associated with the n / K  
blocks of size K of z. Similarly QK(z), where z is a sequence, 
denotes the sequence of lattice points associated with the 

A basic structure figure of the lattice quantizer, which is 
particularly useful when the square error distortion measure 
is considered, is the quantizer's normalized second moment, 
see [4] 

K-blocks of 2. 

where the polytope Pa is the quantizer basic cell, and V = sp0 dx is its volume. The variance per dimension of the vector 
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Z K ,  which is uniformly distributed over PO, is E = G K . V ~ / ~  
(e.g., t = A2/12 for scalar uniform quantizer where A is the 
quantizer step). Note that unlike the scalar case where the 
uniform lattice is the only possible lattice, there are many 
possible K-dimensional lattice quantizers; thus it is desired to 
choose at each dimension the quantizer with the minimal GK.  
It is shown in [24] that this optimal lattice quantizer has the 
property that the vector Z K  - U(P0) is white, i.e. 

E{Z&y} = E .  I ( 5 )  

where 1 is the identity matrix. In general, Q K  is defined to be 
a white lattice quantizer if it satisfies (5). 

Subtractive dithered quantization (see [181 and [ 191) is 
achieved by adding the random variable Z K  to every K-block 
of source samples before quantization, and subtracting it at 
reconstruction. The dither samples are drawn independently 
for every new K-block, and are assumed to be available to 
the decoder (e.g., the dither comes from a pseudo-random 
number generator). Thus the decoder represents a source vector 
X K  E RK as 

?K Q K ( X K  + Z K )  - Z K .  (6) 

In ECDQ, the output of the quantizer is losslessly encoded 
(“entropy-coded”) conditioned on the dither signal. Thus the 
number of bits required for ECDQ of a vector X, E Rn, 
where K divides n, is given by the conditional entropy 
of the quantizer output H ( Q K ( X ~  + Z ) l Z ) ,  where Z is a 
concatenation of n / K  independent replica of Z K ,  and where 
we have also neglected the possible redundancy of the lossless 
encoding-decoding operation. 

We retum now to the proposed system for encoding 
continuous-time signals. The coding rate of the entire system 
is the rate of the ECDQ block defined above, whose input is 
IC, and its output is 2,. Following the discussion above, the 
asymptotic coding rate of the system is 

a F, . R ( Q K ( x ~  + z)lz) (7) 

bits per second, where g( . )  denotes entropy rate per sample. 
It is simple to verify that since the K-blocks of Z are inde- 
pendent and since X is stationary, the conditional entropy per 
sample decreases monotonically with n = K ,  2K, 3K, . . . , 
and hence the limit above always exists. Note that by using 
a universal coding method that achieves the entropy for 
losslessly coding the quantizer output, the entire scheme 
becomes universal in the class of sources with prescribed band. 

The error signal of the proposed coding scheme is 2( t )  - 
z ( t ) ,  and hence the distortion, under MSE criterion, is 

(8) 

Note that the error signal is block-stationary (or cyclo- 
stationary) and thus in general, its expected distortion may 
vary periodically with time, with a cycle of KT,. However, 
if desired, it can be forced to be stationary by choosing 
randomly, with uniform distribution, the initialization of 
the quantization block. Moreover, it is shown below that 

D = E { ( X ( t )  - X ( t ) ) 2 } .  

even without randomization the MSE is time-invariant and 
independent of the source. 

To end this section and before we get to the detailed deriva- 
tion, we summarize the main results of the paper. We shall 
be interested in comparing the performance of our scheme to 
the optimal performance, given by R(D) ,  the rate-distribution 
function of the source. Let p = ~ ( X , D , F , , Q K )  = RQ - 
R ( D )  be the redundancy, or the extra rate, which, in general, 
is a function of the source, the distribution level, the sampling 
rate, and the structure of the lattice quantizer. In this paper 
(Section IV) we show 

for all “smooth” sources. Furthermore 

where the supremum is over all sources (with bandwidth B 
and all distortion levels. Next, our main result (presented in 
Section V) is 

PO(F,QK) 2 P o ( ~ B , Q K )  = B l o g 2 T G ~ .  

Roughly speaking, this inequality means that there is less, in 
coding rate, due to oversampling (i.e., sampling above the 
Nyquist rate). Nevertheless, as the lattice dimension of the 
quantizer increases, the loss due to oversampling decreases, 
as we show (in Section VI) that 

~ ~ ( F , Q K )  -), for all F, 2 2B. 

111. GENERAL EXPRESSIONS FOR 
RATE-DISTORTION PERFORMANCE 

The rate of the sampling and quantization scheme is deter- 
mined by the ECDQ block, and so it can be obtained from the 
results of [22], where the ECDQ performance in coding vector 
sources has been analyzed. Nevertheless, we provide, below, 
a simpler rederivation of the results of [22], and use it to get 
a general expression for the rate of the scheme presented in 
this paper. 

Let the discrete dither signal, which is a concatenation 
of independent realization of Z K ,  be denoted Z[n].  Define 
N,[n] = X,[n] - X,[n],  i.e., N ,  is the ECDQ error signal. 
We first recall the following theorem: 

Theorem I: N, is independent of X ,  and distributed as -2 
(i.e., when the lattice quantizer is symmetric, Nq is distributed 
as the dither.) 

This theorem is well known at least for scalar dithered 
quantization (see [19] and also [lo], p. 1701). For completeness 
it is proved in the Appendix, Subsection A, for the general 
lattice case. The theorem shows that as far as the inputloutput 
relations are considered, the ECDQ block is equivalent to the 
discrete additive noise channel, depicted in Fig. l(b), whose 
input is X q [ n ]  and its output is X,[n] = X,[n] + N,[n]. We 
show below that the scheme’s distortion is determined from 
this inputloutput relation. 

As for the rate, we now show in Theorem 2, that the entropy 
of the quantizer output, which defines the scheme’s rate, is the 
mutual information between X ,  and X,. Specifically, let XI, 
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X,, 2, and N, denote blocks of length n as defined above. 
We claim the following theorem. 

Theorem 2: 

H(QK(Xq  + z)lz) = I(xn; A,) = I(xq; x, + Nn) (9) 

where I (  .; .) denotes mutual information. 
Proofi Observe that 

H ( Q K ( X ~  + z)lz) = H(QK(Xq + 2) - 212) 
= H(X,IZ) .  (10) 

Since X ,  and 2 determine X, ,  H(X,IX, ,  2) = 0 and so 

H(X,IZ) = H(X,IZ) - H(X,IX, ,  2) = I@,; X,lZ). 

qx,; X,lZ) = I ( X &  Xn, 2) - qx,; 2). 

(11) 

(12) 

Now, by the chain rule for the mutual information 

However, since we can also write 2 = Q K ( X , )  - X q ,  2 can 
be expressed deterministically in terms of X,,  and so 

I ( X , ;  x,, 2) = qx,; 2,). 

qx,; X,lZ) = I ( X &  X,) .  

Also, since 2 is independent of X , ,  I ( X , ;  2) = 0. Thus 

Combining this with ( 1  0) and (1  I ) ,  leads to the desired relation 
(9). 

This theorem was originally proved in a different, more 
complicated, way in [22]. Note that the proof here holds for 
any distribution of X , ,  discrete or continuous. In light of this 
theorem, the asymptotic coding rate of the scheme, (7), in 
encoding the continuous time source X ( t ) ,  is given by the 
mutual information rate per second between the input and 
output of the discrete equivalent channel, i.e. 

1 A 
RQ = F, . lim - I ( X , ;  X , )  = F, . r ( X , ;  X,) .  (13) 

n-30 n, 

Using Theorem 1,  we may further write 

RQ = F, . r ( X , ;  X ,  + N q )  

E ( X ,  + N,) - - 1 log(t/GK)) (14) 2 

where denotes differential entropy rate per sample. The 
right-hand side of (14) follows by decomposing the mutual 
information rate into a different of entropy rates, and substi- 
tuting 

- 1 1 
K 2 

h(N,) = -log v = -log (t/GK) 

h(N,) = ; log ( E / G K )  

h(Xq + Nq) 2 W q )  

(see [22]). Since 
- 

is finite, and 
- 

the existence of the rate limits in (7) and (13) is confirmed 
by (14). 

We now consider the distortion in coding X ( t ) .  Let 

be the output of a Discrete-to-Continuous (D/C) converter 
whose input in N,[n]. We use a white lattice quantizer (see 
(5) above) and so the samples of N,  are uncorrelated and 
have an equal power t = GKV2IK.  Thus the noise N ( t )  
is a wide-sense-stationary process, with a flat power spectral 
density 

over the frequency range (0, Fs/2) .  Let NB(t )  be the signal 
achieved by further low-passing the continuous-time noise 
N ( t )  to the frequencies f 5 B .  With these definitions, it 
follows from Theorem 1 that the error process X ( t )  - X ( t )  
equals in distribution to N ~ ( t ) + x ~ ( t )  - X ( t ) ,  where X g ( t )  
is the output of the anti-aliasing filter, as depicted in Fig. 1. 
Furthermore, since, by (l) ,  the process X,(t) equals X ( t )  in 
the mean-square sense, i.e. 

(17) E { ( X B ( t )  - X(t)I2} = 0 

E { ( X ( t )  - X ( W }  = - q ~ B ( t ) 2 }  + E { ( X B ( t )  - X ( t ) ) 2 }  
= E{NB( t )2} .  

we have 

Summarizing all the above, the overall MSE of the scheme 
(8) is given by 

2B B 
D = E { N B ( ~ ) ' }  = 1 S,(f) df = t . - = 2€T,B. (18) 

Observe from (18) that as long as ET, is kept constant, i.e., 
a simple tradeoff is kept between the sampling rate and the 
quantization resolution, the MSE distortion is the same. Note, 
however, that this simple tradeoff is valid only if the lattice 
quantizer is white, although the additive noise channel model 
of the scheme and the coding rate formula (13) still hold in 
general. 

0 FS 

Iv. ANALYSIS OF THE CODING RATE FORMULA 

At any sampling period T, and any resolution t, the general 
expressions derived in the previous section provide the rate- 
distortion curve RQ(D) of the proposed coding scheme, for 
any given source. However, these expressions may be too 
complicated to calculate and are too generic to provide insight 
regarding, e.g., the tradeoff between the sampling rate and 
the quantizer resolution. In this section we identify the major 
factors which dominate the behavior of the coding rate as a 
function of the quantizer resolution and the sampling rate. 

We analyze the coding scheme behavior at various sampling 
rates. Thus for a unified framework, our results are presented in 
terms of the continuous-time additive noise channel depicted 
in Fig. 2. In this channel, the noise n(t)  defined in (15) is 
added to the signal X B ( ~ )  obtained by pre-filtering the source, 
and the result, 2(t)  = x g ( t )  + n(t) ,  is passed through a 
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Fig. 2. Equivalent continuous-time channel for rate and distortion. 
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Fig. 3. X ,  ,VB, and N H  and their spectra. 

low-pass filter to yield the output, i ( t )  = Z B ( ~ )  + nB(t). 
A sample function of the high-passed part of the noise which 
is filtered away is denoted n ~ ( t )  = n(t)  - n ~ ( t ) .  In Fig. 3 
we show typical spectra of the source ( X ) ,  the in-band 
noise ( N B ) ,  and the high-passed noise ( N H ) .  Clearly, the 
equivalent continuous-time channel of Fig. 2 preserves the 
statistical relations between X ,  X B ,  X ,  and X ,  which are 
the continuous-time inputs and outputs of the coding scheme. 
In Theorem 3 below we further show that the coding rate may 
also be written in terms of mutual information rates between 
these continuous-time processes. 

Before stating that theorem, we need to introduce some 
definitions and notations. First, we recall that there are several 
possible definitions for the mutual information rate between 
continuous valued processes (see, e.g., [16, p. 761 and [9, 
pp. 135-1411). In this paper we mostly use the so-called 
Pinsker rate. Let X = { X ( t ) ,  -cc < t < -CO} and Y = 
{ Y ( t ) ,  -m < t < m}, be continuous-time processes with 
continuous values. Pinsker’s rate is defined as 

1- 7(’)(X;  Y )  = sup h I ( y x ( X ( h ) ) ;  Y ~ ( Y ( ~ ) ) )  (19) 
h, q z )  q y  

bits per second, where 

X ( h )  = { X ( n h ) ,  n = 0, f l ,  f 2 . .  .) 

Y(h )  = { Y ( n h ) ,  n = 0, f l ,  f 2 . .  .} 

y, (.), yy (.) denotes a time-invariant scalar quantizer with 
a finite number of levels, and 7 is the (regular) mutual 
information rate per sample, defined in (1 3), between the 
discrete-time processes q, ( X ( h ) )  and qy(Y(h)) which have 
discrete values. The supremum in (19) is taken over all 

possible sampling periods h and finite quantizers q, and qy. A 
similar definition applies for the Pinsker rate between discrete- 
time processes, where then we fix n to be the sampling period. 
For jointly stationary processes, Pinsker’s rate always exists. 
Note that Pinsker’s rate between processes in which each 
sample function is bandlimited (like X B ( ~ )  or N ( t ) ) ,  is equal 
to Pinsker’s rate between the sumpzed processes after the 
appropriate normalization to bits per second. This property 
is one of the important features of the definition (19), and 
it follows directly from the fact that 7”) satisfies the data 
processing theorem (see [16, p. 95, properties (6) and (7)l). 
This property enables us to associate the information rates 
in the discrete part of the coding system with the rates in 
its continuous part. It should be pointed out that the other 
definitions of the mutual inJonnation rate, also made in [16] 
under the names 7, I”, and I ,  lead to meaningless values (0 or 
00) for continuous-time bandlimited processes. Nevertheless, 
these other definitions are useful in the discrete-time case, and 
are utilized in certain cases below. 

Second, we make the following definitions of a nondegen- 
erate source, and a smooth source: 

Definition I :  A source X ( t )  is nondegenerate if the 
Nyquist sampled process of X,(t) has the “finite-gap 
information property” (see [9, sect. 6.4]), i.e. 

I(XB(0); XB(-1/2B), XB(-2/2B), ’ .  ’) < oc). (20) 

Furthermore, the source X ( t )  is smooth if the Nyquist sampled 
process of X B ( ~ )  is smooth, i.e., its differential entropy rate 
exists and is finite 

- 
h, h(X~(1/2B),  XB(2/2B),...) > --CO. (21) 

The first property above provides a key tool in our analysis, 
since the various definitions of the mutual information rate 
coincide for the Nyquist sampled process of a nondegenerate 
source (see [16, Theorem 7.4.21 and [9, Theorem 6.4.21). 
The property of smoothness is important since it implies 
nondegeneration, and, as will be shown in the next subsection, 
it allows simple analysis in the low distortion limit. 

For a Gaussian source 
B - 

hx = 1% (2reBSd.f)) df  

and the mutual information in (20) is 
- 

log 2reo; - h,. 

Thus both conditions (20) and (21) become 

I” log S,(f) df > --CO. (22) 

In the general case, (22) is a necessary condition for smooth- 
ness since the Gaussian entropy upperbounds the source en- 
tropy. 

We now return to the continuous-time channel of Fig. 2. In 
the following theorem we provide expressions for the scheme’s 
coding rate in terms of the mutual information rates between 
signals in the equivalent channel: 
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Theorem 3: 

RQ = T(’)(X; X )  2 T(’)(X; X )  (23) 

with equality at the Nyquist sampling rate F, = 2B. Further- 
more, for a nondegenerate source at any sampling rate, 

RQ = T ( g ) ( X ;  X )  + T(’)(Ng; N H )  - I(”(X; N H ) .  (24) 

The proof is given in the Appendix, Subsection C. 
Observe that from this theorem the scheme’s coding rate 

can be written as the mutual i?formation rate between X and 
X ,  but not between X and X .  Moreover, the lower bound 
in (23) is strict in some cases and so this theorem actually 
implies that the rate of the coding scheme is higher than 
the mutual information rate between the input signal and the 
reconstructed signal. Intuitively, the reason is that some extra 
bits are transferred since the scheme does not fully utilize the 
fact that at reconstruction the signal is filtered. 

An alternative reason is that the information on the source 
that exists in the outband noise is ignored, due to the filter at 
reconstruction. 

As for the more technical aspects of the theorem, we note 
that (24) is well defined: Pinsker’s rate 7‘’) always exists the 
rate 

RQ = F ( X ;  X )  2 9 ( X ;  2) 
is finite from (7) or (14), and as shown in the Appendix, 
Subsection B, 

is finite as well. The nondegeneration condition required for 
(24) was needed technically for the proof, but we are not sure 
whether it is really a necessary condition. 

We finally note that the proof of the theorem would have 
been very simple if we could apply naively the chain rule 
and other properties of the regular mutual information in (23) 
and (24). However, since these expressions are given in terms 
of mutual information rates of processes, a more complicated 
and careful derivation should be performed. Thus the detailed, 
and somewhat tedious proof, which utilizes all the definitions 
made above, is given in the Appendix, Subsection C. 

In this section we shall also be interested in comparing the 
performance of our scheme to the optimal performance, given 
by the rate-distortion function of the source, defined as 

R ( D )  = F, . lim R,(D) 
n-00 

where R,(D) is the rate-distortion function per sample of the 
vector of n samples X ,  [ 11 . . . X ,  [n] of the sampled process X ,  
under square-error distortion measure. The definition (25) is 
actually the standard definition of the rate-distortion function 
of the sampled process X ,  (see [l]). However, using the 
equivalent process definition of the rate-distortion function 
(see [9, sec. 10.6]), and a simple application of the data 
processing theorem for the Pinsker rate, it can be shown that 
R ( D )  of (25) is equal to 

R ( D )  = inf T ( g ) ( X ;  U )  (26) 
{G: E { ( S ( t ) - b ’ ( t ) ) 2 } < D }  

bits per second, where U is jointly stationary with X .  This last 
definition (26) is close to the ‘‘€-entropy rate” of X defined 
in [12]. From (26) it is clear that R ( D )  is indeed independent 
of the actual sampling rate of X ,  as we have mentioned in 
the Introduction. 

In the rest of this section we further analyze the scheme’s 
rate, and its excess rate over the rate-distortion function of 
the source in two cases. First, we consider the behavior at 
low distortion, and so this analysis is in the realm of high- 
resolution quantization theory. The second derivation provides 
a constant upper bound on the excess rate of the scheme 
over the source’s rate-distortion function which holds for all 
distortion levels, and so it provides a worst case figure for the 
scheme’s performance. Analyzing the effects of the sampling 
rate on the rate expressions is deferred to Section V. 

A. Low-Distortion Behavior of the Coding Rate 

The analysis is performed by identifying the main compo- 
nents in the coding rate formula (24), and observing that for 
smooth sources, at low distortion, there are essentially two 
terms. One term is the equivalent of Shannon’s lower bound 
on the rate-distortion function, which is independent of the 
sampling rate but depends on the source and the distortion 
level. The second term, which is further analyzed at Section 
V, is independent of the source and the distortion level, but 
depends on the sampling rate. 

We begin our analysis of (24) with the term T ( ” ) ( X ;  X ) ,  
whose behavior parallels that of the discrete-time ECDQ of 
[22]. Define 

1 -  p - - 2 2 h X  x -  21re 

to be the entropy power (rate) of the Nyquist samples of X g ( t )  
(see [l]), where h, was defined in (21). Following [22], we 
define the “resolution measure” of the coding procedure with 
respect to the source as 

(27) 

By definition, r ( D )  2 0. It is shown in the Appendix, 
Subsection D that for smooth sources r ( D )  < 00 and r ( D )  + 

0 as D - 0. Now for smooth sources we claim the following 
lemma. 

A - (g) r ( D )  = I (NB; N B  + X B ) .  

Lemma I :  

The proof of Lemma 1 is given in the Appendix, Subsec- 
tion E. The notation ~ ” ( N B ;  N i )  is the “divergence from 
Gaussianity” of N B  in bits per unit time (see [23] and [9, 
cor. 7.4.3]), i.e., it is the divergence rate between the Nyquist 
sampled process of NB and the Nyquist sampled process of 
the Gaussian process N i  having the same mean and spectrum 
as NB.  By the divergence data processing theorem 

with equality at the Nyquist sampling rate F, = 2B (see the 
Appendix, Subsection B and [24]). As a matter of fact, a tighter 
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bound 

- (9) D ( N B ;  N i )  5 B log 2 7 ~ e G ~  

can be deduced from a generalization of the Entropy Power 
Inequality (EPI) shown in [23]. Now by [24], the optimal 
lattice quantizers satisfy GFt -+ 1/27~e as K + CO, and 
so if we use optimal lattices, we get that as the dimension 
grows ,(”(NB; N i )  + 0. We retum to this point in Section 
VI below. 

The term B . log (P,/D) in (28) is a lower bound, actually 
it is a generalization of the Shannon lower bound for the 
rate-distortion function of the source ([ 1, Theorem 4.6.5]), i.e. 

1 R ( D )  2 R L ( D )  = 2 B  . 

= Blog (g) 
We now retum to the rest of the terms in the coding rate 

formula (24). The term $’)(NB; N H )  is independent of both 
the source and the distortion but may depend on the sampling 
rate, and at this point it will not be analyzed further. As for 
the term ?’ ) (X ;  N H ) ,  by the data-processing theorem, it is 
upper-bounded by the resolution measure, i.e. 

-(’I I 
( X ;  N H )  5 F ( X ;  NB)  = r ( D )  

and so it is negligible for small D. 

express the coding rate of the scheme for smooth sources as 
In summary, we can combine (24), (28), and (30), and 

RQ(D)  = RL(D)  +D‘”(NB; N;) + T(’)(NB; N H )  - .  -4 

indpt. of F, depend on F, ,  indpt. of X, D 

+ O(T(D))  . (31) - 
vanishes with D 

Furthermore, for smooth sources R ( D )  - R L ( D )  -+ 0, as 
D -+ 0 (see [13]). Thus the low-distortion analysis of the 
coding scheme can be summarized by the following theorem, 
which is given in terms of the redundancy of the scheme 
p(D)  a R Q ( D )  - R(D) .  

Theorem 4: For any nondegenerate source 

p(D) 5 D(’)(NB; N i )  + I(”(NB; N H )  + r ( D ) .  (32) 

Furthermore, for smooth sources 

p ( ~ )  + D(”(NB; N ; )  + T(’)(NB; N H ) ,  as D -+ 0. 
(33) 

The expressions in (3 1) and in Theorem 4 above identify the 
quantity B(’)(NB; N;)  + ~ ‘ ” ( N B ;  N H )  as the component 
of the coding rate which depends on the sampling rate (but 
not on the source nor on the distortion). It tums out that as 
we increase the sampling rate, NB approaches normality and 
so D‘’)(NB; N i )  + 0. On the other hand, T ( g ) ( N ~ ;  N H )  
increases. The detailed effects of increasing the sampling rate 
are discussed in Section V below. 

We note that at Nyquist’s sampling rate the expression (33) 
for the low-distortion redundancy becomes log 27reGK bits 

per Nyquist sample, agreeing with well-known results from 
entropy-constrained high-resolution quantization theory (see 
[6] and [7]). Thus (33) suggests an extension of the high- 
resolution quantization theory to the case of oversampled 
sources. 

So far our analysis focused on the low-distortion case 
for smooth sources, where the resolution measure vanishes. 
Next, we derive the continuous-time version of the universal 
“capacity bound” of [22], which holds for all distortion levels 
and all sources. Interestingly, the quantity ,(’)(Ng; NA) + 
$ ” ( N B ;  N H )  also dominates the behavior of this universal 
bound. 

B. The Constant (Capacity) Bound 

Define by C the following capacity: 
Consider again the equivalent channel, depicted in Fig. 2. 

- 
C = F , .  S U P  I P q ;  xq + Nq) 

{X E{X2(t) l lDl  

- - sup P ( X ;  X ) .  (34) 
{ X  E{XZ(t) l lDl  

This is the power-constrained capacity of the channel whose 
output is the signal before the low-pass filter in the output 
of the equivalent channel of Fig. 2. Since the noise power 
in the band f 5 B is D, and since the mutual information 
is invariant to scaling, the power constraint E { X 2 ( t ) }  5 D 
in (34) actually means that the SNR in the effective band is 
restricted to be at most 1, or at most 2B/Fs in the entire band, 
and so G is independent of D. As claimed in the following 
theorem, the capacity (34) is an upper bound for the scheme’s 
redundancy. 

Theorem 5: For any source 

p ( D )  = R Q ( D )  - R ( D )  5 c. (35) 
The proof of this Theorem, which is similar to the proof of 

[22, Theorem 21, is given in the Appendix, Subsection F. 
The capacity bound of Theorem 5 is tight for the high- 

distortion case, as it can be attained at high distortion by the 
source that achieves the capacity. To see this, observe that 
the power of this source (which in general may be block- 
stationary) is D, as the allowed distortion. Thus the rate 
distortion function of this source at distortion D is zero and 
so the redundancy is the quantizer rate which is the mutual 
information or, for this source, the capacity (34) of the channel. 
From this example we conclude that the capacity bound cannot 
be improved by another constant bound. 

This theorem extends [22, Theorem 21, which can be applied 
only when operating at Nyquist’s rate where the noise band 
is identical to the signal band. To assess the effect of higher 
sampling rate on the capacity we suppose that the capacity, 
given by (34), can be decomposed as in (24), and so we obtain 

(36) C B  5 c 5 C B  +T(’)(’YB; Nff) 
where 

c g  = sup P ( X ;  X )  
{X E{X2(t)IFDl 

{X E { X J ( t ) ) < D l  

-(’I sup I (Xi?; X B  + N B )  (37) - - 
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is the constrained capacity (in bits per unit time) of a channel 
with a band-limited additive noise. 

Note that for Nyquist’s rate we have cg % l / 2  log h e G ~  
bits per sample, which is the capacity bound of [22]. Following 
[22, Appendix C], CB can be further bounded as 

BlOg(1 + 2&5(g)(NB’Ng)) 5 CB 5 B + B ( g ) ( N ~ ;  N;). 
(38) 

When B ( g ) ( N g ;  N g )  + 0 which happens, as noted above, 
at high sampling rate and at large lattice dimension, we get 
CB = B bits per unit time. 

Equations (36) and (38) can be combined and we get the 
following desired upper bound: 

p ( D )  5 B + D(g) (NB;  N;) + 7 ( g ) ( N B ;  NH) .  (39) 

By comparing (33) to (39) we observe that for smooth 
sources the redundancy at low distortion is smaller by at most 
B bits per unit time (or half a bit per Nyquist sample) than 
the redundancy at high distortion. These results have the same 
flavor as our bounds for vector sources in [22]. 

v. THE EFFECT OF INCREASING THE SAMPLING RATE 

We have already discussed the effect of the sampling rate on 
the distortion of the coding scheme. As noted in Section 111, for 
square error distortion D = 2tT,, and SO there exists a simple 
tradeoff between the sampling period (T,) and the quantizer 
resolution (given by t, the second moment of its basic cell) 
in determining the distortion. We now examine the effect of 
increasing the sampling rate on the coding rate RQ. To set a 
common ground for comparison, we assume in the analysis 
that while the sampling rate increases (i.e., T, decrease), 2tTs 
is kept constant, and its value is determined by the allowed 
distortion. This constant is the spectral level of the noise 
N ( t )  (see (16)). The quantizer choice determines the noise 
distribution (for example, for scalar quantizer the samples of 
Nq are uniformly distributed), and is also assumed fixed. The 
sampling rate, whose variation is examined, determines the 
fraction of the entire band that is occupied by the in-band 
noise NB(t ) .  

Since the distortion is fixed, the rate-distortion function of 
the source is fixed, and the effect of increasing the sampling 
rate, on the coding rate, is reflected in the scheme’s redundancy 
p ( D )  = RQ(D)  - R(D) .  In the high-distortion case, this 
redundancy is close to the capacity bound in (39), while in the 
medium- and low-distortion cases, the effective redundancy 
expressions are (32) and (33). All these expressions are valid 
when sampling at Nyquist’s rate or faster. As pointed out 
above, in all these expressions for the redundancy there are 
terms which depend on D which vanish (for smooth sources). 
as D -+ 0 and become B (in the bound) for high distortion, 
and there are the two common terms, D(’’(Ng; NI;) and 
-(9) I ( N E ;  N H ) ,  which are independent of D and the source. 
The analysis of these two terms that are strongly affected by 
the sampling rate, sheds light on the effect of oversampling 
on the coding rate of the scheme. This analysis is given in the 
following theorem, which is rigorously proved for the scalar 
quantizer case ( K  = 1) and conjectured for the general case. 

Note that at the Nyquist rate where F, = 2B, both upper 
and lower bounds coincide and so 

-(g) ( N E ;  N;)+T(”)(NB;  N H )  = B . l o g 2 T e G ~ .  

Thus the lower bound can be interpreted as the value of 
~ ‘ ” ( N B :  NI;) + T(”(NB; N H )  at the Nyquist rate. The 
interesting implication of the theorem and this observation is 
that when the distortion is kept constant the coding rate ,of the 
scheme operating at a sampling rate higher than Nyquist’s rate 
is larger than the rate of the scheme operating at Nyquist’s 
rate. 

Proo) In the Appendix, Subsection B we show that 

9 ( N B ;  NH) = B ( ” ( N ;  N * )  

- D(g)(NB;  N;) 

- D ( g ) ( N H ;  NI;) 

and thus 

D‘”(NB; NI;) + T‘g)(NB; N H )  

= B(’) (N;  N * )  - $ ” ( N H ;  N f i ) .  (41) 

The upper bound in (40) is obtained by substituting 

-(9) V ( N ;  N * )  = Fs . log2.rreG~ 

into (41), and utilizing the nonnegativity of the divergence. 
To obtain the lower bound in (40), we use the generalization 

of the Entropy Power Inequality (EPI), developed in [23], 
which provides the following upper bound (see [23, eq. (21)] 
for the divergence from Gaussianity of an i.i.d. vector N = 
N I ,  . . . , N, multiplied by a noninvertible matrix A: 

1 1 
- V ( A N ;  AN*)  5 -V(N; N*) 
m n (42) 

where m is the rank of the matrix A, V(.; .) is the divergence, 
and N* is a Gaussian vector having the same second moments 
as N. A similar relation can be stated for a process N 
interpolated from an i.i.d. sequence using the interpolation 
formula of (15) 

1 -(9) -27 ( A { N } ;  A { N * } )  5 i D ( g ) ( N ;  N * )  (43) m n 

where A is a noninvertible linear time-invariant transforma- 
tion, rL is the number of degrees of freedom per second of N 
(given by F, = l/Ts of the interpolation formula), and m is 
the number of degrees of freedom per second of the filtered 
process A { N } .  Now, N H  is the output of a noninvertible high- 
pass filter whose input is the process N interpolated from an 
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i.i.d. sequence. The number of degrees of freedom per second 
of NH is F, - 2B. Thus 

1 
2 

= (F ,  - 2B) . - log27reGK (bits per second). 

(44) 

Combining (44) with the expressions above proves the lower 
bound in (40). 

Note that since the generalization of the EPI was proved for 
a process with i.i.d. samples, it can be used only for K = 1, 
and the lower bound in (40) is proved only for the scalar 
ECDQ case. However, we conjecture that this generalization 
can be extended to i.i.d. K-blocks, so that the lower bound in 

To examine this theorem, we have explicitly calculated the 
(40) holds for general lattice ECDQ’s. 

terms 

-(9) 2) ( N B ,  NG) e D(F.) 

and 
-(9) a -(9) I (NB;  N H ) = I  (Fs)  

for the uniform scalar quantizer case, at a few sampling rate 
examples. For the Nyquist sampling rate 2)(2B) z 0.254.2B 
while T‘”(2B) = 0. As the sampling rate is increased 
by a factor of 2, 2)(4B) z 0.033 . 2 B  and it becomes 
(approximately) 0.009.2B as the sampling rate is increased by 
a factor of 3.  The term f ( F , )  is approximately 0.44 . 2B and 
0.64.2B as the sampling rate increases by factors of 2 and 3,  
respectively. We see that, indeed, in these examples, the rate 
of the coding scheme increases, as the sampling rate increases, 
even when the quantizer resolution is reduced to keep the same 
distortion. These calculations may also point out that the lower 
bound in (40) is loose, i.e., at high sampling rate the coding 
efficiency of the scheme is even worse than what is implied 
by the lower bound in (40). 

VI. LARGE LA’ITICE DIMENSION: 
EQUIVALENT AWGN CHANNEL 

The expressions for the rate distortion of the proposed 
scheme, its redundancy, and the tradeoff relation between the 
sampling rate and the quantization accuracy would become 
simple, if we could have assumed that the additive noise in the 
equivalent channel of Fig. 2 is Gaussian, with a flat spectrum 
of level 2tTs, and independent of the source. In accordance 
with the notation above, this additive Gaussian noise is denoted 
by N*( t ) ,  while the additive noise in the output, after bandpass 
filtering, which is Gaussian and bandlimited to 0 5 f 5 B,  is 
denoted N;(t) .  The MSE distortion is 2eT,.B, the variance of 
N;(t). Since in the Gaussian case the components of N * ( t )  
in the passband and the stopband are independent, the rate 

(45) 

is equal to ~ ( ” ( X B ;  X B  + N i ) ,  and so as long as t .  T, is 
kept constant we get the same rate. 

- (9)  I ( X B ;  X B  + N * )  A R 5 ( D )  

As discussed in [24], the proposed quantization scheme 
becomes equivalent to an Additive White Gaussian Noise 
(AWGN) channel in the limit as the lattice dimension becomes 
large, at any fixed sampling rate. To see this, we use a result, 
proved by Poltyrev [ 171, asserting that the normalized second 
moment of the optimal lattice quantizer satisfies, 

lim G F t  = 1 E 0.058823 (46) 
K-CC 27re 

where G F t  is the minimal value of GK over all lattices of 
dimension K .  This result implies 

2) as K + 20 

(47) 
i.e., the quantization noise N ( K )  converges to Gaussianity 
in the divergence sense. Throughout this section we denote 
by superscript ( K )  the corresponding terms when an optimal 
K-dimensional lattice quantizer is used. 

-(9) 1 
( N ( K ) ;  N * )  = F, . - 10g27reGFt + 0; 

2 

Combining (46) with (40), implies immediately that 

D(g)(NiK); AT;) + F ) ( N L K ) ;  N g ) )  -+ 0 

for any sampling rate, as K -+ 20. Thus the main results 
of Section I11 can be simplified in the following way: (31), 
which expresses the rate at low distortion for smooth sources, 
becomes in the limit 

Equations (36) and (38) expressing the “capacity bound” and 
valid for all sources and distortion levels, become in the limit 

The limits in both (48) and (49) are the expressions that would 
have resulted if the scheme was an AWGN channel. 

Finally, it should be noted that a stronger claim 

which holds for all smooth bandlimited sources, with equality 
if the source is Gaussian, can be shown from the results in 
[24]. In other words, for Gaussian sources, at any distortion 
level, our scheme is asymptotically equivalent, from the coding 
rate point of view, to an AWGN channel (for millimeter 
Gaussian sources, it may even be better). This equivalence 
implies that if we change the sampling rate, but change with 
it the quantizer resolution so that tT, is kept constant, i.e., we 
keep the simple tradeoff that maintains the distortion fixed, 
the equivalent AWGN channel remains the same, and so the 
coding rate is also kept constant. 

In the asymptotic Gaussian noise case it is easy to calculate 
the scheme’s performance for Gaussian sources. For example, 
suppose our source has a power spectrum Sx( f). Then, the 
rate of the coding scheme is given by 
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SQNR (dB) 

Fig. 4. Rate-distortion of the coding scheme for flat spectrum and 
Gauss-Markov sources compared with optimal performance. 

where D = E .  T, .2B is the square error distortion and the rate 
is measured in bits per seconds. When the source has a flat 
spectrum with level af/B, the rate of our scheme becomes 
B . log (1 + (u ; /D) ) .  The source’s rate-distortion function is 
B . log ( a f / D ) .  Thus the scheme’s redundancy is 

This redundancy expression holds for all distortion levels. At 
high distortion, D/a;  M 1 and we get p = B, i.e., 0.5 bits 
per Nyquist sample. This is also the capacity of an additive 
Gaussian noise channel when the input variance equals to the 
noise variance. At low distortion levels, where D/uf + 0, we 
find, as expected, that the redundancy approaches zero. 

Fig. 4 summarizes the examples discussed above. It shows 
RQ(D) ,  the performance of our scheme, for two sources: 
a Gaussian source with flat spectrum, and a first-order 
Gauss-Markov source for which the ratio of the -3dB 
bandwidth (Bo) to the entire band ( B )  is 0.1. For comparison, 
we have plotted the rate-distortion function of the flat source, 
and the Shannon lower bound on the rate-distortion function 
of the Gauss-Markov source (since its rate-distortion function 
is hard to calculate). All plots are given as a function of 
SQNR = of/D, (given in decibels) and normalized to bits 
per Nyquist’s sample. 

VII. SUMMARY 
Concluding the paper, we point out its main observation. 

When we tradeoff the sampling rate and the quantizer resolu- 
tion, keeping the quantity ET, (the quantizer second moment 
times the sampling rate) constant, we get the same distortion 
but the coding rate is increased. Thus if one prefers to use a 
simple, low-resolution, quantizer (say 1-bit quantizer) at the 
expense of higher sampling rate, which has some practical 
advantages, he should be aware that the overall bit rate is 
larger. This paper provides bounds on the resulting excess bit 
rate. 

The results of this paper could have been presented for 
vector sources. The analogous of a band-limited process, 
sampled at a rate higher than Nyquist’s rate, is a vector source 
whose components have linear deterministic relation, or in the 
mean-square sense, its correlation matrix does not have full 

rank. The analogous “oversampling ratio” is n/m, where n is 
the dimension of the vector source and m is the rank of its 
correlation matrix. Now, suppose this vector source is encoded 
by an ECDQ. Following the main observation of the paper, 
the coding rate would become smaller if, prior to coding, the 
source is projected over the (minimal) linear subspace where 
its energy is concentrated. This is, of course, analogous to 
coding the Nyquist sampled process in the bandlimited source 
case. 

An oversampled but reduced resolution quantizer leads to 
another practical problem. Consider the tradeoff relation E .  T,. 
We realize that since E is proportional to the square of the 
quantizer step size, in order to save one bit in quantization, 
i.e., to use half the number of quantization levels, E is increased 
by 4, and so the sampling rate must increase by 4 to get the 
same distortion. Thus without entropy coding the rate may 
increase by much more than what is implied by the results of 
this paper. For example, if we use 2 levels (1 bit) instead of 
64 levels (6 bits) of A/D, we must increase the sampling rate 
by 45 = 1024, getting 1024 bits for each original 6 bits at 
the A/D output. This increase in rate disappears later, after the 
lossless encoder. This observation emphasizes the important 
role played by the entropy encoder. 

Note that in sigma-delta techniques [2] the rate increase at 
the A/D output is usually smaller than the increase mentioned 
above, since some of the lossless encoding is performed “on 
the fly,” by filtering and prediction. Nevertheless, using the 
ECDQ does have in principle an advantage over sigma-delta 
methods. As expected, if sigma-delta coding with multiple 
bits is used, the distortion decreases exponentially with the 
number of bits, but the distortion decreases only polynomially 
(see [2]) as the sampling rate (and as a result the bit rate) 
increases. On the other hand, in ECDQ as the sampling rate 
increases, using the same quantizer, the distortion decreases 
exponentially with the bit rate since the performance of the 
scheme is at most a constant away from the source’s rate- 
distortion function, and so it has the same behavior of R as 
a function of D when D + 0. Again, this advantage comes 
from the fact that we use entropy coding and so an increase in 
the bit rate of the ECDQ might correspond to a much higher 
increase in the sampling rate. 

Yet another word of caution should be mentioned. The 
ECDQ and our entire analysis assume a “subtractive dither,” 
i.e., we assumed that the decoder has an access to the dither 
used by the encoder, and can subtract it. This might be 
cumbersome in some practical cases. 

Finally, we note that the rate we calculated is the conditional 
entropy of the quantizer output. If we use a universal entropy 
coder that estimates the probabilities of the quantizer output, 
conditioned on the dither, we must use a discrete-valued dither 
realization. This will lead to an additional approximation of 
the theory derived in this paper. 

APPENDIX 

A. Proof of Theorem 1 

Consider first a K-block of the error vector X K  - X K ,  
and examine the conditional probability distribution function 
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of X K  - X K  given x K ,  i.e. 

Pr { X K  - X K  I ~ J x K )  

= P ~ { Q K ( X K  + Z K )  - ( X K  + Z K )  I aIXK} (AI) 

where, in general Pr {B 5 a}  means Pr {PI 5 a1, . . . , PK 5 
a ~ }  and {a;} ,  {pi}  are the components of the K-dimensional 
vectors p, a. We observe that the function e ( t )  = Q K ( ~ )  + t 
has the lattice periodicity in the sense that e ( t )  = e ( t  + Z i )  
where Zi E L is a lattice point. Furthermore, the indicator 
function 

A 

if e ( t )  5 a 
= { i: otherwise 

has also the lattice periodicity. Now, we can write 

- I a ( X ~  + t ) d t .  (A2) 
- ap0 

Since Ia(.)  is lattice-periodic and the integral in (A2) is 
over the lattice cell, then, (A2) and so (Al), representing the 
probability of the error vector, do not depend on the value of 
X K ,  i.e., the error vector is statistically independent of X K .  

As for the distribution of X K  - XK, since (Al) has the 
same value for each XK we may choose XK = 0 and, since 
QK(ZK) = 0, VZK E PO, we get 

Pr { X K  - X K  5 a> = Pr { Q K ( z K )  - Z K  5 a> 
= Pr{-ZK 5 a} (A31 

i.e., the error vector X K  - XK is distributed as - Z K .  
Since the dither is drawn independently for each K-block 

this result is easily extended to concatenation of K-blocks, 
and the theorem follows. 

B. Existence and Decomposition of 7") ( N B  ; N H )  
In this part of the Appendix we show that the Nyquist 

sampled processes of N B  ( t )  and N H  ( t )  are smooth (as defined 
in (21)), and that their mutual Pinsker rate ?"(NB; N H )  is 
finite. For that, let 

denote the "sample-and-hold" process, attained from NB ( t )  
by sampling at Nyquist's rate and interpolating by a constant 
between the samples, and let N(BT) denotes the vector of 
Nyquist samples of NB(t )  in the time interval [0, T ) ,  i.e. 

Nr) = N B ( ~ / ~ B ) .  . . N B ( ~ / ~ B ) ,  where n = L2BT]. 
(-44) 

Similarly, we define the processes N g q )  and N(nq), and the 
vectors Ng) and N ( T )  as the sampled processes and vectors 
of N H ( ~ )  and N ( t ) ,  sampled at the corresponding Nyquist 
rates F, - 2B and F,, respectively, where for N g q )  and Ng) 
we assume that NH(t)  is down-converted to baseband prior 
to sampling. Since every realization of N B  and NH is strictly 

bandlimited, they are completely determined by their Nyquist 
samples. Thus by the data processing theorem 

- p ( N B ;  N H )  = 7 ( g ) ( N p ;  N p ) ) .  

Now, assume for a moment that N g q )  has the finite-gap 
information property, i.e., 

I ( N B ( 0 ) ;  NB(-1 /2B) ,  NB(-2 /2B) ,  ' .  .) < M. 

Under this assumption, we may replace the Pinsker rate 7") by 

see [9, Theorem 6.4.2.1. Now, the mutual information between 
the vectors NF) and Ng) may be decomposed into a sum 
of entropies, according to the identity I ( A ;  B )  = h(A)  + 
h(B)  - h(A, B). However, this decomposition is valid only 
if the differential entropies are finite. Thus we have to show 
that the limits in 

exist and are$nite. Furthermore, if 

exists and is finite, it implies that the Nyquist sampled process 
of NB(t )  is smooth and hence N g q )  indeed has the finite-gap 
information property and our assumption is true. 

We first show that the third term in (A6) exists and is finite. 
Consider the divergence ,(''(NB, N H ;  N i ,  NG). Since it is 
invariant under invertible transformation of its arguments we 
have 

-(9) V ( N B ,  N H ;  N i ,  N g )  = ,(')(N; N * )  
= Fs . $ log ( 2 7 r e G ~ )  

i.e., it is finite. Consider also 

Since N B  and NH are uncorrelated, the Gaussian vectors 
N2TT)  and N S T )  are independent, and we can write 

Now, since we can formally write 
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and since ,(’)(Ng, N H ;  N; ,  N&)  is finite, then either both 
terms in the right-hand side of (A8) are undefined, or both 
terms are defined and finite. Since we just showed that 

exists and finite, we conclude that 

is finite as well. 

information and so it is nonnegative. As just shown 
Now looking back at (A6), we note that it is a mutual 

exists; thus the other two terms of (A6) which are the entropies 
associated with its components also exist. In addition, these 
entropies have a finite upper bound-the entropies of the 
Gaussian processes N& and N&. But since 

is, finite 

and 

must be finite as well. 
We finally point out that as in the relations above, we may 

express the divergence as a difference between entropies and 
can straightforwardly see that 

C. Proof of Theorem 3 

show that the coding rate satisfies 
We begin with the first part, i.e., proving (23). We first 

Our convention is that 7”) is always measured in bits per 
second; hence, -whenever 7”) has a discrete-time argument 
(e.g., X ,  or X ,  in the equation above), it is considered 
as a continuous-time “sample-and-hold” process, having a 
constant value between two consecutive sample time points. It 
is important to make this convention, since, in some cases, the 
discrete-time processes we consider are obtained by different 
sampling rates. 

Now, the equality (a) in (AlO) follows from Theorem 2. 
To obtain equality ( b ) ,  we show next that X, is smooth, and 
thus it has the “finite-gap information property” (20) under 
which Pinsker’s rate 1‘’) and the regular mutual information 

rate 7 coincide. For that, we use well-known properties of the 
differential entropy to write 

This, together with the fact that I ( X , o ;  Xq- l ,  X , - 2 , . . . )  = 
h(X,o) - h(X,o IXq-l, X1-2,. . .), leads to the desired con- 
dition (20). Finally, equality (e) is implied by the following 
sandwich argument: On one hand, observe that by construction 
X + X ,  i X ,  + X form a Markov chain, and so, by the 
data-processing theorem, which as discussed above is satisfied 
by the Pinsker rate 7(’)(Xq; X,)  2 7‘”(X; X ) .  On the other 
hand, X ,  is fully determined by X ,  and X ,  is fully deter- 
mined by X ,  implying, again by the data-processing theorem, 
$”(X,; X,)  5 ,(’)(X; X). Notice that in the derivation 
above we did not require the source to be bandlimited. 

The lower bound in (23) follows-from the data-processing 
theorem and the fact that X + X ---f X form a Markov 
chain. In the special case F, = 2B we have X = X ,  and the 
inequality becomes equality. 

We now turn to prove (24). We write the following chain 
of equalities: 

where X g q )  denotes the Nyquist samples process of the 
bandlimited process X g ,  and the conditional Pinsker rate is 
defined as in (19), conditioned on the entire process X ( n Q ) .  
The rate I” is defined, for an arbitrary process (variable) U ,  as 

1 
f ( X g q ) ;  U )  = 2B . limsup - I ( X g q ) ;  U )  (A13) 

N - m  

where X g q )  denotes n-tuples of X g q )  (see [16, p. 761, and 

The chain of equalities in (A12) holds as follows: (a) 
follows from (A10); (b) follows from the data-processing 
theorem and the fact that the sample function zg‘) has a 
one-to-one relation with z, (as in (Al0)-(e)); ( e )  follows 
from the assumption that X is nondegenerate, and thus Xgn) 
has the “finite-gap _information property” (20) and 7”) can 
be replaced with I ;  for ( d )  and ( e )  we first observe that 
there is a linear deterministic one-to-one relation between the 
sample function 5 = P + n H  and the pair of sample functions 
{i, n ~ } ,  since they occupy nonoverlapping frequency bands; 
then, we use the fact that the second argument in I ( . ;  .) is 
considered as a random variable rather than a process, and 

19, P. 1411). 
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so it may be manipulated according to the basic properties 
of mutual information, i.e., it is invariant under an invertible 
transformation and the chain rule; finally, ( f )  follows similarly 
to ( e ) ,  since X is nondegenerate. 

We continue with another chain of equalities 

j (  ~ g q )  ; N E  ) ( ~ ) f (  ~ $ q )  ; N ~ ,  xB) 
e)- - ~ ( N H  (nq) ; 2 1 X l 3 )  

(5) - I ( N g q ) ;  - X )  + f ( N g * ) ;  X B ~ X )  (A14) 

where we use the fact that X B  is independent of both N B  and 
N H ,  and apply the same technique as in equalities ( d )  and ( e )  
of (A12). Now, in Subsection B where we showed that N g q )  
is smooth, and thus (A14) also holds for the corresponding 
Pinsker rates. Combining with (A12) we get 

RQ = f ( g ) ( X g q ) ;  2) + f ( g ) ( N g q ) ;  N E )  - $”(Ngq); 2). 
(‘415) 

The desired result, (24), is obtained by replacing the Nyquist 
sampled processes with their equivalent bandlimited processes, 
and changing X B  to X ,  as in (Al0)-(e). 

D. Low-Distortion Behavior of r ( D )  
The term r ( D )  which appears, e.g., in Theorem 4 is 

analogous to the resolution measure defined in [22]. In [14] it 
was shown that r ( D )  vanishes, as D --f 0, for vector sources 
with a finite differential entropy. In this subsection we show a 
similar result for discrete-time processes with a finite entropy 
rate, and in some cases we even characterize the convergence 
rate. 

Let us first recall the following lemma due to [13]: 
Lemma2: Let X = X I ,  X p I . . .  and N = N I ,  N z , . . .  be 

stationary processes with finite powers, EX: < CO, EN: < 
m, and assume that 

- A 1 
h ( X )  = lim -h(X1 . . .  X n )  

n-cc n 
exists and is finite, then 

lim h(X + a .  N )  = x ( X )  (A16) 

where X + a N  = X I  + aN1, Xp + aN2, .... 
We are now ready to investigate r ( D )  = ? g ) ( N ~ ;  X B  + 

N E )  as we vary D, the MSE distortion level of the coding 
scheme. It is assumed that D = E { N z ( t ) }  is varied by 
scaling a lattice quantizer which has a given structure, at a 
fixed sampling rate F,. We claim the following. 

CU-bO 

Lemma 3: For smooth sources, r ( D )  -+ 0 as D -+ 0. 
Pro08 Since the Nyquist sampled process of N B  is 

smooth, we may write, as in (A6) above 
1 

T-m T r ( D )  = lim - [ h ( X r )  + NF’) - h ( X r ) ) ] .  (A17) 

Now, since the distortion is varied by scaling Q K ,  we may 
substitute Ng) = . &r), where NE) is the Nyquist 
samples vector of the quantization noise in the case D = 1, 
i.e., when t = Fs/2B. Furthermore, since the source is smooth 

1 
T+oo T lim - h ( X r )  = 2B .?E, > --oo 

and E X ;  = < 03. Hence, Lemma 2 implies 

which proves this lemma. 
It turns out, as shown in [ 131, that Lemma 3 above holds not 

only for the MSE distortion measure, but rather for a larger 
class of distortion measures. 

In some cases, the low-distortion behavior of r ( D )  may be 
expressed more explicitly. We consider here two such cases: 
the case of a Gaussian source, and the case of a Gaussian noise 
which is associated either with large lattice dimension (see 
Section VI) or with high sampling rate. In these two examples 
r ( D )  = O ( D )  for small D. 

If the source is Gaussian, denoted X *, we may upper bound 
r ( D )  by 

r ( D )  = ~ ( ” ( N B ;  N B  + X * )  5 f ( g ) ( N i ;  N i  + X * )  

where N i  denotes Gaussian quantization noise, with the same 
spectrum as N E ,  and the last equality holds if S,(f) 2 s > 0 
for some s, at all frequencies. For a Gaussian source with flat 
spectrum, (A18) reduces to 

If the noise is Gaussian, we assume that h ( X r )  + fi . 
N 3  is twice differentiable with respect to a in the neigh- 
borhood of LY = 0, and we use the well known De-Bruijn’s 
identity 

where J ( X r ) )  is the Fisher information of X r ) ,  to obtain 

r ( D )  = f ( g ) ( N i ;  N i  + X,) 
1 

= T-m lim - [ h ( ~ r )  T + JO. f i z f ) )  - ~ ( x F ) ) ]  
log e 1 

= D .  - . lim - J ( X r ) )  + O ( D 2 ) .  (A19) 2 T-coT 

If the source is Gaussian with flat spectrum 

and (A19) is consistent with the previous case. 

E. Proof of Lemma 1 

As in the proof.of Theorem 3, X + X B  + 2 forms a 
Markov chain, implying 7‘g’(x; 2) = T(’)(XB; X B  + NB) .  
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By a similar decomposition to that in (A17) and similarly to 
the decomposition in (A8) we obtain 

-(9) I ( X B ;  XB + N B )  = r (D)  + 2 B .  h, + D(”(NB; NA) 
- 2B . i log (27reD) (A20) 

and substitute h, = ilog(2.rrePZ) to complete the proof of 
the lemma. 

F. Proof of Theorem 5 

Let U = { U ( t ) }  be a process, jointly stationary with the 
source X and independent of the noise N ,  and let U, = 
{U, [n]}  be obtained from U by low-pass filtering to bandwidth 
B and sampling at a rate F, (in the same way X, is obtained 
from X). It follows from the proof of [22, Theorem 21 that, 
for any such U and any block length n 

I(xq; Xq+Nq)  I I ( X q :  U q ) + I ( X , - U q ;  X , - U , + N , )  
(A2 1) 

where X I ,  N , ,  and U, are n-vectors of the corresponding 
processes. Dividing by n and taking the limit, we get the same 
inequality for the information rates, i.e. 
- qx,; x, + N,)  - qx,: U,) 

5 I ( X ,  - U,: X, - U, + N,)  (A22) 

provided that T ( X q ;  U,) exists. By (13) and (23) the leftmost 
term of (A22) satisfies 

F, .T(X,;  X, )  = RQ = I (” (X:  X )  

and similarly (by the smoothness of N,)  the rightmost term 
satisfies 

F, . T(X, - U,; X , r U , )  = $”(X - U :  X T U ) .  

Now, suppose in addition that E ( X  - U ) 2  5 D, implying 
E(X, - U,)’ 5 D. Then we may write 

RQ(D)  - R ( D )  = F, . (T(x,: X, )  - i;ff(x,; U,)) 

- < s u p f ( ” ( X  - U ;  X Y U )  = C (A23) 

where the infimum and supremum are under the constraint 
that E ( X  - U ) z  5 D, and 

R ( D )  = infT(”(X; U )  = F, . irifT(X,; U,) 

x, U 

U U 

by (26) and by [9, Theorem 10.6.11. Note that we actually 
proved a somewhat stronger claim, that for any D and e,  
RQ(E) - R ( D )  5 C ( S N R  = D/t). 
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